

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

A NEW APPROACH TO THE DETECTION AND DETERMINATION OF o-CHLOROBENZYLIDENE-MALONONITRILE (CS) AND ITS CHEMICAL RELATIVES

Ivan G. Binev^a, Yuri I. Binev^a; Ivan N. Juchnovski^a

^a Institute of Organic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria

Online publication date: 13 June 2002

To cite this Article Binev, Ivan G. , Binev, Yuri I. and Juchnovski, Ivan N.(2002) 'A NEW APPROACH TO THE DETECTION AND DETERMINATION OF o-CHLOROBENZYLIDENE-MALONONITRILE (CS) AND ITS CHEMICAL RELATIVES', *Spectroscopy Letters*, 35: 2, 285 — 291

To link to this Article: DOI: 10.1081/SL-120003813

URL: <http://dx.doi.org/10.1081/SL-120003813>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

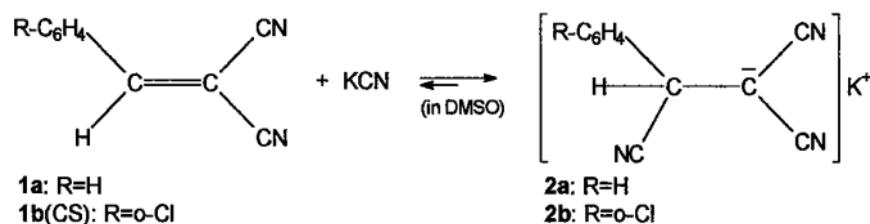
**A NEW APPROACH TO THE DETECTION
AND DETERMINATION OF
o-CHLOROBENZYLIDENE-
MALONONITRILE (CS) AND ITS
CHEMICAL RELATIVES**

Ivan G. Binev,* Yuri I. Binev, and Ivan N. Juchnovski

Institute of Organic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

ABSTRACT

o-Chlorobenzylidene malononitrile (CS-gaz) has been found to react with KCN in DMSO and to form practically quantitatively a stable 1:1 adduct of carbanionic structure. The conversion results in the appearance of two very strong $\nu_{C\equiv N}^s$ and $\nu_{C\equiv N}^{as}$ IR bands of the dicyanomethide fragment of the adduct at 2161 cm^{-1} and 2106 cm^{-1} , respectively. These bands can be used to detect selectively and to determine quantitatively CS and its chemical relatives, including in the presence of large quantities of other substances.


*Corresponding author. E-mail: binev@orgchm.bas.bg

Key Words: o-Chlorobenzylidenemalononitrile (CS); Aduct; Carbanion; Infrared spectra; Detection; Determination

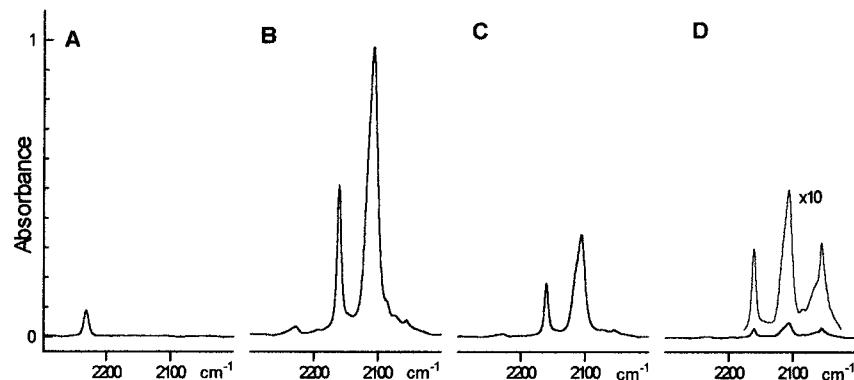
INTRODUCTION

Ylidemalononitriles, a large series of compounds easily accessible by synthesis¹⁻³, have shown a variety of physiological activities and have been used for various purposes, e.g., from anti-cancer and X-ray protective medicines to pesticides, rodent repellents, hair-growth stimulating agents, etc.¹⁻⁶ However one of these compounds, viz. o-chlorobenzylidenemalononitrile (CS, **1b** in Sch. 1), has turned to be a strong irritant and has been used as the active principle in numerous military antipersonnel devices (lachrymators, tear gases)^{1-3,6,7}. There is information about 13,736 t of CS applied in South Vietnam within the years 1964-1969⁸. CS is nowadays the most common riot-control agent^{1-3,6,7}, used also for self-defense in various gas-maces, etc.

It is obvious therefore, that there should be a simple, reliable, selective and sensitive method of detection and determination of this widespread and dangerous substance. The classical methods of detection and determination of CS are based on colour reactions of itself or of its hydrolysis products, followed by photoabsorption⁹⁻¹² or luminescence^{13,14} measurements. Some of these methods are highly sensitive^{11,12,14} but all of them have many limitations and suffer from lack of selectivity⁶. Direct IR measurements in the $\nu_{C\equiv N}$ region^{6,13,15} have low selectivity, as numerous nitriles show singlet bands near 2230 cm^{-1} ¹⁶. The complex approach, based on IR, NMR, Mass spectra etc.^{6,17-19} increases, of course, the selectivity, but it needs considerable amounts of the *pure* substance. At present CS is detected by means of gas chromatography/mass spectrometry²⁰⁻²². The "yellow powder",

Scheme 1. Synthesis of the potassium cyanide adducts (**2a,2b**) of benzylidenemalononitrile (**1a**) and its o-chloro derivative (CS, **1b**).

having caused pupils' intoxication in Curituba (Brazil), has been identified as CS in the same manner²³.


EXPERIMENTAL

CS was prepared by Knoevenagel condensation^{2,3} between malononitrile and o-chlorobenzaldehyde (Fluka) in dry ethanol solvent, using sodium ethoxide as catalyst. After double recrystallization from ethanol, its melting point was 94 °C, in agreement with Ref. 24. The potassium cyanide adduct of CS was prepared, as follows (see Scheme 1): 1 mL of 0.001–0.070 mol·L⁻¹ dimethyl sulphoxide (DMSO) solutions of CS were added in small glass tubes to an excess of potassium cyanide (Merck). The reaction mixtures were stirred for a minute and then filtered through a syringe-filter. The adduct obtained (**2b** in Sch. 1) is in fact a carbanion, but a very stable one, so the use of an argon protection²⁵ could be recommended, but this is not necessary.

The IR spectra were measured on Bruker IFS 113v and Vector 22 spectrophotometers in a CaF₂ cell of 0.13 mm path length at a resolution of 1 cm⁻¹ and 50 scans. The spectral measurements were restricted within the 1460–2700 cm⁻¹ region, in view of the transparency of both the cell windows and solvent. The peak wavenumbers were reproducible within ± 0.1 cm⁻¹.

RESULTS AND DISCUSSION

We have recently found²⁵ that the unsubstituted benzylidenemalononitrile (**1a**) reacts with potassium cyanide in DMSO to form practically quantitatively the adduct **2a** (Sch. 1). The structures of both the parent nitrile and its adduct have been determined, and the assignment of their IR bands have been performed on the basis of ab initio force field calculations²⁵. We supposed that a similar reaction should take place also with its o-chloro derivative (CS, **1b**). Our present experiments (see Experimental) confirmed completely this supposition. In fact CS reacted with potassium cyanide in a similar way to form the adduct **2b** (Sch. 1). The conversion was practically complete: no bands of the parent CS were seen in the spectra of the reaction mixtures (Fig. 1, Table 1). The 2000–2300 cm⁻¹ spectrum of the adduct **2b** (Fig. 1(B)) is very close to that of **2a**²⁵ and this result guarantees a close similarity in the structures of the adduct **2a** and **2b** (Sch. 1). The bands in the spectra of both CS and its adduct (Table 1) are assigned by analogy with those of **1a** and **1b**²⁵. The moderate band at 2232 cm⁻¹ in the spectrum

Figure 1. IR spectra (ν_{CN} region, solvent DMSO): (A) CS, $0.070 \text{ mol}\cdot\text{L}^{-1}$; (B) KCN adduct of CS, $0.070 \text{ mol}\cdot\text{L}^{-1}$; (C) the same adduct, $0.021 \text{ mol}\cdot\text{L}^{-1}$; (D) the same adduct, $0.0035 \text{ mol}\cdot\text{L}^{-1}$.

of CS (Fig. 1, Table 1) corresponds to both $\nu_{\text{C}\equiv\text{N}}^s$ and $\nu_{\text{C}\equiv\text{N}}^{\text{as}}$ vibrations in the molecule: e.g., for the **1a** molecule the predicted, but not measurable splitting between the corresponding bands is 4 cm^{-1} only. The conversion of the CS molecule into the adduct results in a strong enhancement of the $\text{C}\equiv\text{N}/\text{C}\equiv\text{N}$ vibrational coupling (ν_{CN} splitting of 54 cm^{-1} , Table 1), like in the cases of other species containing dicyanomethide groups, e.g., malononitrile carbanion (54 cm^{-1} ²⁵), alkali-metal methoxide, potassium cyanide and heptylamine adducts of **1a** ($52\text{--}57 \text{ cm}^{-1}$ ²⁵), butyldimethylammonium dicyanomethylide (49 cm^{-1} ²⁶), etc.

Table 1. Infrared Data for the CS Molecule and Its Potassium Cyanide Adduct

Molecule	Adduct						Assignment ^d
	ν^a	ε^b	A^c	ν^a	ε^b	A^c	
2232.2	93	10	2230.8	22	3	$\nu_{\text{C}\equiv\text{N}}$	
			2160.8	552	62	$\nu_{\text{C}\equiv\text{N}}^s$	
			2106.4	1057	260	$\nu_{\text{C}\equiv\text{N}}^{\text{as}}$	
1597.0	112	17				ν_{CC}	
1587.7	127	15	1588.5	67	37	ring 8a ^f	
1469.0	61	11	1472.5	86	16	ring 19a ^f	

^aFrequency in cm^{-1} . ^bMolar absorbance in $\text{L}\cdot\text{mol}^{-1}\cdot\text{cm}^{-1}$. ^cIntegrated intensity in $\text{km}\cdot\text{mol}^{-1}$. ^dBy analogy to Ref. 25. ^eThe band of the new (added) cyano group in the adduct. ^fWilson's notation.

The position of the weak band at 2230.8 cm^{-1} in the spectrum of the adduct is close to the ν_{CN} band of the parent CS (Fig. 1, Table 1). Thus, having in mind the equilibrium character of the reaction (Sch. 1), this band could be incorrectly ascribed to the incomplete conversion of the parent CS into the adduct. However we have rejected the same assumption in the previous case **2a**²⁵ by using KC^{15}N instead of KC^{14}N in the reaction (Sch. 1). The ^{15}N isotopic shift of 31 cm^{-1} of this band proved unambiguously, in agreement between theory and experiment, that the third, weak band near 2230 cm^{-1} corresponded to the third (new, added) cyano group of the adduct.

The enhanced spectra of very low-concentrated (with respect to CS) solutions (Fig. 1(D)) show additional bands below 2100 cm^{-1} . They correspond to the potassium cyanide ion-pairs²⁷, as their concentration is constant in all solutions studied (saturated with respect to KCN).

Comparing both spectra on Fig. 1 and numerical data in Table 1 for CS and for its potassium cyanide adduct gives reasons for the following statements:

- i) The conversion of CS into the adduct is accompanied by a strong increase in the ν_{CN} band intensity. For example: the $\nu_{\text{C}\equiv\text{N}}^{\text{as}}$ band of the adduct is 11 fold stronger (by molar absorbance) or 26 fold stronger (by integrated intensity) than ν_{CN} of CS. So, this conversion leads to an essential increase (by an order or more) in the sensitivity of the IR detection and determination of CS.
- ii) The $\nu_{\text{C}\equiv\text{N}}^{\text{s}}$ and $\nu_{\text{C}\equiv\text{N}}^{\text{as}}$ frequencies of the adduct are away from the cyano stretching frequencies of all the nitrile molecules ($2180\text{--}2260\text{ cm}^{-1}$ ¹⁶). Bands $\nu_{\text{C}\equiv\text{N}}^{\text{s}}$ (strong) near 2160 cm^{-1} and $\nu_{\text{C}\equiv\text{N}}^{\text{as}}$ (very strong) near 2100 cm^{-1} are typical only for anions, dianions and zwitterions, containing dicyanomethide group^{25,26,28,28}. Hence similar, but not exactly the same spectral patterns could give only CS and its chemical relatives. Having in mind, that no ylidemalononitriles other than CS have actually been used for offensive purposes¹, we can state that the above spectral measurements are highly selective.
- iii) The procedure described (see Experimental) can be preceded by a simple extraction of the sample available with chloroform, ether or another volatile solvent, and evaporation of the extragent. In this manner samples of soil, foliage, mud, etc., can be also studied. Because of the high selectivity of the IR measurements described, other soluble substances, eventually present in the samples, could neither block nor hinder both the detection and determination of CS and of its chemical relatives.

CONCLUSION

We hope the procedure described in this paper, can be used as a simple, reliable, highly selective and sufficiently sensitive method for both detection and determination of CS and its chemical relatives, including in samples containing large quantities of by-substances.

ACKNOWLEDGMENT

This work was supported by the Bulgarian Fund of Scientific Research, Contract X-801.

REFERENCES

1. Jones, G.R.N. *Nature (London)* **1972**, *235/5336*, 257–261.
2. Fatiadi, A.J. *Synthesis* **1978**, *165*, 241–282.
3. Freeman, F. *Chem. Rev.* **1980**, *80*, 329–350.
4. Green, M.R. *Eur. Pat. Appl.* **1990**, *403*, 238, (CA 115, P7809t).
5. Springer, C.J.; Marais, R. *PCI Int. Appl.* **1995**, WO 95 02, 420, (CA 122, P214525m).
6. Hassan, S.S.M.; Abdalla, J.M.; Nashed, N.E. *Mikrochim. Acta* **1984**, (II) 27–38.
7. Dmitriev, V.I. *Voen.-Med. Zh.* **1974**, 88–90, (CA 81, 371u).
8. Dikov, A.; Dimitrov, G.; Stanev, T. *The Chemical Arm (Bulg.)*, Military publishers. Sofia **1986**, p. 56.
9. Issa, F.M.; Issa, J.M.; Youssef, N.Z.; Issa, R.M.; Fresenius, Z. *Anal. Chem.* **1975**, *277*, 125–132.
10. Stachlewska-Wroblowa, A. *Biul. Wojsk. Akad. Tech.* **1972**, *21*, 109–116, (CA 78, 11286j).
11. Stachlewska-Wroblowa, A. *Biul. Wojsk. Akad. Tech.* **1973**, *22*, 105–110, (CA 79, 49003j).
12. Spasov, G.M.; Stoev, S.G.; Ivanov, I.P.; Georgiev, V.I.; Nikolova, G.V. *Khim. Ind. (Sofia)*, **1997**, *49*, 109–110, (CA 87, 210674v).
13. Fritsche, U.; Fresenius, Z. *Anal. Chem.* **1980**, *302*, 119–120.
14. Mitru, G.; Ciobanu, O.; Savu, I.; Dinescu, V.; Puscasu, P.; Sonu, M.; Savu, T. *Rev. Chim. (Buharest)* **1995**, *46*, 585–590, (CA 123, 245764p).
15. Sreenivansan, V.R.; Boese, R.A. *J. Forensic Sci.* **1970**, *15*, 433–442.
16. Juchnovski, I.N.; Binev, I.G. In *The Chemistry of Functional Groups*; Patai, S., and Rappoport, Z., Eds.; Wiley: New York, 1983; Chapter 4.

17. Advoich, H.W.; Ethier, J.C.; Neville, G.A. *By A. J. Can. Soc. Forensic Sci.* **1981**, *14*, 172–178, (CA 96, 156800d).
18. Martz, R.M.; Reutter, D.J.; Lasswell, L.D. *J. Forensic Sci.* **1983**, *28*, 200–207.
19. Park, S.N.; Kim, N.Y.; Kim, D.H.; Hong, S.W. *Anal. Sci. Technol. (Seoul)* **1992**, *5*, 443–454, (CA 119, 110691j).
20. Hu, X.; Liu, F.; Luo, Y. *Yunshi Yuxue Kehueyuan Yuankan* **1994**, *18*, 306–309, (CA 122, 125437s).
21. D'Agostino, P.A.; Provost, J. *Chromotogr.* **1995**, *A695*, 65–73.
22. Babakhanyan, R.V.; Bushuyev, Ye.S.; Gutyleva, L.K.; Ignatiev, Yu.A.; Kulbitsky, G.N. *Sud.-Med. Ekspert.* **1996**, *39*, 28–29, (CA 125, 3103w).
23. Kugler, W.; Marcondes, A.A.; Cameri, N.; Berg, R.G.; Murta, A.L.M. *Arq. Biol. Tecnol.* **1995**, *38*, 983, (CA 124, 196111h).
24. Beilsteins Handbuch der Organischen Chemie, 9, II 641.
25. Binev, I.G.; Binev, Y.I.; Stamboliyska, B.A.; Juchnovski, I.N. *J. Mol. Struct.* **1997**, *435*, 235–245.
26. Binev, I.G. *Spectrochim. Acta Part A* **1997**, *53*, 1795–1801.
27. Corset, J.; In *Comprehensive Carbanion Chemistry*; Part A, Bunzel, E., and Durst, T., *Elsevier: Amsterdam, 1980; Chapter 4*.
28. Velcheva, E.A.; Binev, Y.I.; Petrova, M.J. *J. Mol. Struct.* **1999**, *475*, 65–72.
29. Binev, Y.I.; Binev, I.G.; Juchnovski, I.N.J. *Mol. Struct. (Theochem)* **2000**, *532*, 31–36.

Received May 18, 1999

Accepted December 10, 2001